our hypothetical population contains the scores 5, 7, 9, and 11. determine the mean and variance of the sampling distribution of the sample mean., given that samples contain two scores drawn from the population with replacement.
We have population values 5,7,9,11, population size N=4 and sample size n=2.
Mean of population "(\\mu)" = "\\dfrac{5+7+9+11}{4}=8"
Variance of populationÂ
Select a random sample of size 2 with replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn with replacement is "N^n=4^2=16."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 5,5 & 5 \\\\\n \\hdashline\n 2 & 5,7 & 6 \\\\\n \\hdashline\n 3 & 5,9 & 7 \\\\\n \\hdashline\n 4 & 5,11 & 8 \\\\\n \\hdashline\n 5 & 7,5 & 6 \\\\\n \\hdashline\n 6 & 7,7 & 7 \\\\\n \\hdashline\n 7 & 7,9 & 8 \\\\\n \\hdashline\n 8 & 7,11 & 9 \\\\\n \\hdashline\n 9 & 9,5 & 7 \\\\\n \\hdashline\n 10 & 9,7 & 8 \\\\\n \\hdashline\n 11 & 9,9 & 9 \\\\\n \\hdashline\n 12 & 9,11 & 10 \\\\\n \\hdashline\n 13 & 11,5 & 8 \\\\\n \\hdashline\n 14 & 11,7 & 9 \\\\\n \\hdashline\n 15 & 11,9 & 10 \\\\\n \\hdashline\n 16 & 11,11 & 11 \\\\\n \\hdashline\n\\end{array}"Mean of sampling distributionÂ
The variance of sampling distributionÂ
Comments
Leave a comment