1. Assuming that the samples come from normal distributions, find the margin of error given the following:
a. n = 10 and X = 28 with s = 4.0, 90% confidence
b. n = 16 and X = 50 with s = 4.2, 95% confidence
c. n = 20 and X = 68.2 with s = 2.5, 90% confidence
d. n = 23 and X = 80.6 with s = 3.2, 95% confidence
e. n = 25 and X = 92.8 with s = 2.6, 99% confidence
2. Using the information in number 2, find the interval estimates of the population mean.
1.
a.
The critical value for "\\alpha = 0.10, df=n-1=9" degrees of freedom is "t_c\u200b=z_{1\u2212\u03b1\/2;n\u22121}=1.833113."
"E=t_c\\times\\dfrac{s}{\\sqrt{n}}=1.833113\\times\\dfrac{4}{\\sqrt{10}}=2.3187"
b.
The critical value for "\\alpha = 0.05, df=n-1=15" degrees of freedom is "t_c\u200b=z_{1\u2212\u03b1\/2;n\u22121}=2.131449."
"E=t_c\\times\\dfrac{s}{\\sqrt{n}}=2.131449\\times\\dfrac{4.2}{\\sqrt{16}}=2.2380"c.
The critical value for "\\alpha = 0.10, df=n-1=19" degrees of freedom is "t_c\u200b=z_{1\u2212\u03b1\/2;n\u22121}=1.729133."
"E=t_c\\times\\dfrac{s}{\\sqrt{n}}=1.729133\\times\\dfrac{2.5}{\\sqrt{20}}=0.9666"d.
The critical value for "\\alpha = 0.05, df=n-1=22" degrees of freedom is "t_c\u200b=z_{1\u2212\u03b1\/2;n\u22121}=2.073873."
"E=t_c\\times\\dfrac{s}{\\sqrt{n}}=2.073873\\times\\dfrac{3.2}{\\sqrt{23}}=1.3838"e.
The critical value for "\\alpha = 0.01, df=n-1=24" degrees of freedom is "t_c\u200b=z_{1\u2212\u03b1\/2;n\u22121}=2.79694."
"E=t_c\\times\\dfrac{s}{\\sqrt{n}}=2.79694\\times\\dfrac{2.6}{\\sqrt{25}}=1.4544"2.
a.
b.
c.
d.
e.
Comments
Leave a comment