Shown below are ages (π₯) and the systolic blood pressures (π¦) of 9 patients in a certain hospital. Find the regression equation.
Age (π₯) 26 40 35 50 45 55 28 30 52
Blood pressure (π¦) 110 140 120 145 130 150 150 125 142
Linear regression: "y=\\theta_0+\\theta_1x", where "\\theta_1 = \\frac{\\overline{xy}-\\overline{x}\\cdot\\overline{y}}{\\overline{x^2}-(\\overline{x})^2}", "\\theta_0=\\overline{y}-\\theta_1\\overline{x}".
"x=[26, 40, 35, 50, 45, 55, 28, 30, 52]"
"y=[110, 140, 120, 145, 130, 150, 150, 125, 142]"
"x^2 = [676, 1600, 1225, 2500, 2025, 3025, 784, 900, 2704]"
"xy=[2860, 5600, 4200, 7250, 5850, 8250, 4200, 3750, 7384]"
"\\overline{x}= \\frac{1}{9}(26+40+ 35+ 50+ 45+ 55+ 28+ 30+ 52)= \\frac{361}{9}"
"\\overline{y}= \\frac{1}{9}(110+ 140+ 120+ 145+ 130+ 150+ 150+ 125+ 142) = \\frac{403}{3}"
"\\overline{x^2}= \\frac{1}{9}(676+ 1600+ 1225+ 2500+ 2025+ 3025+ 784+ 900+ 2704) = \\frac{15439}{9}"
"\\overline{xy}= \\frac{1}{9}(2860+ 5600+ 4200+ 7250+ 5850+ 8250+ 4200+ 3750+ 7384) = \\frac{16448}{3}"
"(\\overline{x})^2= \\frac{130321}{81}"
"\\overline{x^2}-(\\overline{x})^2 = \\frac{15439}{9}-\\frac{130321}{81}=\\frac{8630}{81}"
"\\overline{xy}-\\overline{x}\\cdot\\overline{y}=\\frac{16448}{3}-\\frac{361}{3}\\cdot\\frac{403}{3}=-\\frac{96139}{9}"
"\\theta_1=\\frac{8630}{81}:(-\\frac{96139}{9})=-\\frac{69040}{7787259}"
"\\theta_0=\\frac{403}{3}+\\frac{69040}{7787259}\\frac{361}{9}=\\frac{9439719571}{70085331}"
"y=\\frac{9439719571}{70085331} -\\frac{69040}{7787259}x"
"y=40.111-0.009x"
Comments
Leave a comment