Let’s consider "r(u)=\\langle2u, \\ u^2+3, \\ 2u^2+5\\rangle"
"r(1)=\\langle2,4,7\\rangle"
The unit tangent vector is "\\frac{r^{\\prime}(u)}{|r(u)|}" .
"r^{\\prime}(u)=\\langle 2,\\ 2u,\\ 4u\\rangle, \\ \\ r^\\prime (1)=\\langle 2,\\ 2, \\ 4\\rangle, \\ \\ |r^\\prime (1)|=\\sqrt{2^2+2^2+4^2}=2\\sqrt{6}"
"\\frac{r^{\\prime}(1)}{|r(1)|}=\\frac{1}{2\\sqrt{6}}\\langle 2,\\ 2,\\ 4\\rangle =\\frac{1}{\\sqrt 6}\\langle 1,\\ 1,\\ 2\\rangle" .
Answer: the unit tangent vector at the point "(2,4,7)" is "\\frac{1}{\\sqrt 6}\\langle 1,\\ 1,\\ 2\\rangle" .
Comments
Leave a comment