"s = \\int_0^t\\vert\\vert r'(v)\\vert\\vert \\mathrm{d}v \\\\\n\nr'(t) = 2\\textbf{i} - 3\\textbf{j} + 4\\textbf{k}\\\\\n\nr'(v) = 2\\textbf{i} - 3\\textbf{j} + 4\\textbf{k}\\\\\n\n\\vert\\vert r'(v) \\vert\\vert = \\sqrt{2^2 + 3^2 + 4^2} = \\sqrt{29}\\\\\n\n\n\\therefore s = \\int_0^t \\sqrt{29} \\mathrm{d}v = \\sqrt{29}(t - 0) = \\sqrt{29}t\\\\\n\n\n\n\\Rightarrow t = \\frac{s}{\\sqrt{29}} \\\\\n\n\n\n\\displaystyle\\therefore r(t(s)) = \\left(\\frac{2s}{\\sqrt{29}},1-\\frac{3s}{\\sqrt{29}}, 5 + \\frac{4s}{\\sqrt{29}}\\right) \\\\\\textsf{is the required reparameterized}\\\\\\textsf{equation of the curve}"
Comments
Leave a comment