Solution:
Given,
"\\sigma:\\R^2\\rightarrow \\R^3\\\\\n(r,\\theta)\\mapsto(r\\cos \\theta,r\\sin \\theta, 2\\theta)"We have to find the tangent plane of "\\sigma" at "P(\\sqrt{3}, 1,\\pi\/3)=\\sigma(2,\\pi\/6)"
Now,
We have that
"\\frac{\\partial \\sigma}{\\partial r}=\\sigma_r=(\\cos\\theta,\\sin\\theta, 0)""\\frac{\\partial \\sigma}{\\partial \\theta}=\\sigma_\\theta=(-r\\sin\\theta, r\\cos\\theta,2)"Thus,
"\\sigma_r(2,\\pi\/6)=(\\sqrt{3}\/2,1\/2,0)"and
"\\sigma_\\theta(2,\\pi\/6)=(-1,\\sqrt{3},2)"Now we find the normal to the plane
Hence,the equation of the tangent plane at point "P" is:
Comments
Leave a comment