The unit normal vector is given by (http://mathonline.wikidot.com/the-frenet-serret-formulas): "N(s)=\\frac{T'(s)}{||T'(s)||}" , where "T(s)=\\frac{\\vec{r}'(s)}{||\\vec{r}'(s)||},"
where "r(s)" is an arc-length parametrization of "\\vec{r}(t)".
(a) We point out that one has an arc-length parametrization in this case. The length of the circle is "2\\pi" and it corresponds to the interval "[0,2\\pi)" for possible values of "t". Thus, t=s. We have:
"r'(t)=(-sin(t),cos(t),0)\\Rightarrow ||\\vec{r}'(t)||=1."
"T(t)=(-sin(t),cos(t),0)"; "T'(t)=(-cos(t),-sin(t),0)";
"N(t)=(-cos(t),sin(t),0)".
The geodesic curvature is (https://encyclopediaofmath.org/wiki/Geodesic_curvature):
"k_g=\\frac{(r',r'',n)}{|r'|^3}" , where "n" is a normal vector for the surrface. The normal vector is:
"n=(2u,2v,-1)" (see https://mathworld.wolfram.com/NormalVector.html).
After substitution of the curve equation, we get that "n=(2cos\\,t,2sin\\,t,-1)" on the points of the curve. Thus, "k_g=\\begin{vmatrix}\n -sin\\,t & cos\\,t &0 \\\\\n -cos\\,t & -sin\\,t &0\\\\\n2cos\\,t & 2sin\\,t &-1\n\\end{vmatrix}=-1"
(b) We calculate the length of the curve between "[0,2\\pi)" and get:
"I=\\int_{0}^{2\\pi}\\sqrt{(x'(\\theta))^2+(y'(\\theta))^2+(z'(\\theta))^2}d\\theta=\\int_{0}^{2\\pi}\\sqrt{a^2sin^2(\\theta)+a^2cos^2(\\theta)+b^2}d\\theta=2\\pi\\sqrt{a^2+b^2}"
We make a change of variables: "s=\\theta\\sqrt{a^2+b^2}" . Then the curve takes the form:
"x(s)=a\\,cos(\\frac{s}{\\sqrt{a^2+b^2}}); y(s)=a\\,sin(\\frac{s}{\\sqrt{a^2+b^2}});\\,\\,z(s)=b\\frac{s}{\\sqrt{a^2+b^2}}" . In case we consider an interval "s\\in[0,2\\pi\\sqrt{a^2+b^2})" we receive an arc-length parametrization.
"\\vec{r}'(s)=(-\\frac{a}{\\sqrt{a^2+b^2}}\\,sin(\\frac{s}{\\sqrt{a^2+b^2}}),\\frac{a}{\\sqrt{a^2+b^2}}\\,cos(\\frac{s}{\\sqrt{a^2+b^2}}),\\frac{b}{\\sqrt{a^2+b^2}})" ; "||\\vec{r}'(s)||=1".
"T(s)=\\vec{r}'(s)" ; "T'(s)=(-\\frac{a}{{a^2+b^2}}\\,sin(\\frac{s}{\\sqrt{a^2+b^2}}),\\frac{a}{{a^2+b^2}}\\,cos(\\frac{s}{{a^2+b^2}}),0)" ;
"N'(s)=\\frac{T'(s)}{||T'(s)||}=\\frac{a^2+b^2}{|a|}(-\\frac{a}{{a^2+b^2}}\\,sin(\\frac{s}{\\sqrt{a^2+b^2}}),\\frac{a}{{a^2+b^2}}\\,cos(\\frac{s}{{a^2+b^2}}),0)"
The geodesic curvature is: "k_g=\\frac{(r',r'',n)}{|r'|^3}" .The normal vector for the parametric surface is: "n=r_u\\times r_v=\\begin{vmatrix}\n i & j& k \\\\\n -a\\,sin\\,u & a\\,cos\\,u&0\\\\\n 0 & 0&1\n\\end{vmatrix}=(a\\,cos\\,u,a\\,sin\\,u,0)" . We set "u=\\theta" and get the following curvature:
"k_g=\\frac{(r',r'',n)}{|r'|^3}=\\frac{\\begin{vmatrix}\n -a\\,sin\\,\\theta & a\\,cos\\,\\theta\\,&b \\\\\n -a\\,cos\\,\\theta & -a\\,sin\\,\\theta&0\\\\\na\\,cos\\,\\theta & a\\,sin\\,\\theta&0\n\\end{vmatrix}}{(a^2+b^2)^{3\/2}}=\\frac{1}{(a^2+b^2)^{3\/2}}b\\,\\,0=0"
Comments
Leave a comment