Center of curvature is denoted by "P"
Lets determine the coordinates of the center of curvature at the point "P" on the astroid
Let "\\theta = \\frac{\\pi}{6}"
"\\rho = \\frac{\\delta s}{\\delta \\psi}=12\\ sin\\ \\psi\\ cos\\ \\psi = 6\\ sin\\ \\psi\\\\\nAt\\ \\theta_p=\\frac{\\pi}{6},\\\\\n\\psi_p=-\\frac{\\pi}{6},\\\\\n\\rho_p=6\\ sin\\ (-\\frac{\\pi}{3})=6\\ (-\\frac{\\sqrt{3}}{2})=-3 \\sqrt{3}"
Now
"(X,Y)=(x_p, y_p) +\\rho n"
So written
"\\theta=\\frac{\\pi}{6},\\ \\psi= -\\frac{\\pi}{6}, x_p=\\frac{3 \\sqrt{3}}{2}, y_p=\\frac12, \\rho_p=-3 \\sqrt{3}\\\\\nn_p=(-sin(-\\frac{\\pi}{6})cos(-\\frac{\\pi}{6}))=(sin(\\frac{\\pi}{6})cos(\\frac{\\pi}{6}))= (\\frac12, \\frac{\\sqrt{3}}{2})\\\\\nThus;\\\\\n\\implies(X,Y)=(\\frac{3 \\sqrt{3}}{2}, \\frac12)+|-3 \\sqrt{3}|(\\frac12,\\frac{\\sqrt{3}}{2})\\\\\n\\implies(X,Y)=(\\frac{3 \\sqrt{3}}{2}, \\frac12)+(-\\frac{3 \\sqrt{3}}{2},\\frac{9}{2})\\\\\n\\therefore\\ (X,Y)=(3 \\sqrt {3},\\ 5)"
Hence, the center of curvature of astroid is "(3 \\sqrt {3},\\ 5)"
Comments
Leave a comment