Consider a plane with the surface patch σ(u, v) = (1+2u+3v, u-v,-2+u-4v). Verify the Gauss equations for σ.
"K = \\dfrac{LN-M^2}{EG-F^2} \\\\ E = \\sigma_{u} \\cdot \\sigma_{u} \\\\ F = \\sigma_{u} \\cdot \\sigma_{v} \\\\ G = \\sigma_{v} \\cdot \\sigma_{v} \\\\ L = \\sigma_{uu} \\cdot \\mathcal{n} \\\\ M = \\sigma_{uv} \\cdot \\mathcal{n} \\\\ N = \\sigma_{vv} \\cdot \\mathcal{n}"
"\\sigma_u = (2,1,1) \\\\ \\sigma_v = (3,-1,-4) \\\\ \\sigma_{uu} = (0,0,0) \\\\ \\sigma_{uv} = (0,0,0) \\\\ \\sigma_{vv} = (0,0,0)"
"E = \\sigma_{u} \\cdot \\sigma_{u} = 2(2)+1(1)+1(1) = 6"
"F = \\sigma_{u} \\cdot \\sigma_{v} = 2(3) +1(-1)+1(-4) = 1"
"G = \\sigma_{v} \\cdot \\sigma_{v} = 3(3)+(-1)(-1)+(-4)(-4) = 26"
"L = 0 \\\\ M =0 \\\\ N = 0 \\\\ K = \\dfrac{0(0)-0}{6(26)-1} = 0"
Comments
Leave a comment