Give an example of two metric on R2 which are equivalent ,substantiate your claim
Solution:
Consider two metric spaces on R2;
1.Euclidean metric de
"d_e(\\underline{x},\\underline{y})=\\sqrt{(x_1-y_1)^2+(x_2-y_2)^2}"
2. The max-metric dm
"d_m(\\underline{x},\\underline{y})="max{ |x1-y1|,|x2-y2|}
We have;
"d_m(\\underline{x},\\underline{y})"=max{|x1-y1|,|x2-y2|}"\\leq" "\\sqrt{(x_1-y_1)^2+(x_2-y_2)^2}" ="d_e(\\underline{x},\\underline{y})"
Also;
"d_e(\\underline{x},\\underline{y})=\\sqrt{(x_1-y_1)^2+(x_2-y_2)^2}=\\sqrt{(|x_1-y_1|)^2+(|x_2-y_2|)^2}"
"d_e(\\underline{x},\\underline{y})\\leq\\sqrt{d_m^2(\\underline{x},\\underline{y})+d_m^2(\\underline{x},\\underline{y})}" ="\\sqrt{2}d_m(\\underline{x},\\underline{y})"
Hence,
"d_m(\\underline{x},\\underline{y})\\leq d_e(\\underline{x},\\underline{y})\\leq \\sqrt{2}d_m(\\underline{x},\\underline{y})"
for all x,y"\\epsilon" X.
Hence, metrics dm and de are equivalent.
Comments
Leave a comment