Give an example of a metric space which is not compact
"\\text{$\\mathbb{R}$ is complete in its standard metric, but not compact. The open cover}\n\\\\R=\u22ef\u222a(\u22123,\u22121)\u222a(\u22122,0)\u222a(\u22121,1)\u222a(0,2)\u222a(1,3)\u222a\u22ef\n\\text{has no finite subcover.}"
Comments
Leave a comment