"xy(x^2-y^2)+x^2+y^2-a^2=0"
"xy(x^2-y^2)+x^2+y^2=a^2"
Let us find asymptotes
1) "y=kx+b" - oblique or horizontal asymptote
Substituting gives
"x(kx+b)(x^2-(kx+b)^2)+x^2+(kx+b)^2=a^2"
"x^3(kx+b)-x(kx+b)^3+x^2+(kx+b)^2=a^2"
"kx^4+bx^3-k^3x^4-3k^2x^3b-3kx^2b^2-b^3x+x^2+k^2x^2+2kx+b^2=a^2"
"(k-k^3)x^4+(b-3k^2b)x^3+(1+k^2-3kb^2)x^2+(2k-3kb^2)x^2+b^2=a^2"
Equalization of coefficients for the two leading terms of the equation gives
"\\begin{cases}\nk-k^3=0\\\\\nb(1-3k^2)=0\n\\end{cases}"
"\\begin{cases}\nk(1-k^2)=0\\\\\nb=0 \\ or \\ 1-3k^2=0\n\\end{cases}"
"\\begin{cases}\nk=0 \\ or \\ 1-k^2=0\\\\\nb=0 \\ or \\ 1-3k^2=0\n\\end{cases}"
"\\begin{cases}\nk=0 \\ or \\ k=\\pm1\\\\\nb=0 \\ or \\ k=\\pm\\frac{1}{\\sqrt{3}}\n\\end{cases}"
"\\begin{cases}\nk=0 \\ or \\ k=\\pm1\\\\\nb=0\n\\end{cases}"
"y=0" is a horizontal asymptote.
"y=x\\ and\\ y=-x" are oblique asymptotes
2) "x=c" -vertical asymptote
"cy(c^2-y^2)+c^2+y^2=a^2"
"cy^3+y^2+c^3y+c^2=a^2"
"c=0"
"x=0" - vertical asymptote
Using polar coordinates gives
"x=\\rho\\cos{\\theta}"
"y=\\rho\\sin{\\theta}"
We get
"\\rho\\cos{\\theta}\\rho\\sin{\\theta}(\\rho^2\\cos^2{\\theta}-\\rho^2\\sin^2{\\theta})+\\rho^2=a^2"
"\\rho^2\\rho^2\\sin{\\theta}\\cos{\\theta}(\\cos^2{\\theta}-\\sin^2{\\theta})+\\rho^2=a^2"
"\\rho^4\\frac{1}{2}\\sin{2\\theta}\\cos{2\\theta}+\\rho^2=a^2"
"\\frac{\\rho^4}{4}\\sin{4\\theta}+\\rho^2=a^2"
"\\frac{\\sin{4\\theta}}{4}\\rho^4+\\rho^2=a^2"
If "\\theta=\\pi n" , then "\\rho^2=a^2=>x^2+y^2=a^2"
Consequently, points (a, 0), (0, a), (-a, 0), (0, -a) belong to the curve. These points lie on asymptotes.
We could check it sustituting "x=0=>y=\\pm a" and "y=0=>x=\\pm a"
If we build the curve using information we have found and substituting points, we get such curve (for example, a=2):
Let us build asymptotes and circle "x^2+y^2=a^2"
Comments
Leave a comment