"\\cos a = \\pm \\sqrt{1 - sin^2 a}, \\tan a = \\sin a \/ \\cos a"
Precalculate:
"\\cos x = \\sqrt{1 - (4\/5)^2} = 3\/5, \\tan x = 4\/3"
"\\cos y = \\sqrt{1 - (-12\/13)^2} = 5\/13, \\tan y = -12\/5"
Answer:
"\\begin{aligned}a) \\cos(x+y) &= \\cos x \\cdot \\cos y - \\sin x \\cdot \\sin y \\\\\n&= 3\/5 \\cdot 5\/13 - 4\/5 \\cdot (-12\/13) \\\\\n&= 63\/65\\end{aligned}"
"\\begin{aligned} b) \\tan(x-y) &= (\\tan x - \\tan y) \/ (1 + \\tan x \\cdot \\tan y) \\\\\n&= (4\/3 - (-12\/5)) \/ (1 + 4\/3 \\cdot (-12\/5)) \\\\\n&= 56 \/ (15 - 48 ) = -56 \/ 33\\end{aligned}"
Comments
Leave a comment