Using half-angle formula.
"\\tan\\theta=\\frac{2t}{1-t^2}" , where "t=\\tan\\frac{\\theta}{2}" .
"\\frac{4}{3}=\\frac{2t}{1-t^2}\\\\\n4(1-t^2)=6t\\\\\n2(1-t^2)=3t\\\\\n2-2t^2=3t\\\\\n2t^2+3t-2=0\\\\\n2t^2+4t-t-2=0\\\\\n2t(t+2)-1(t+2)=0\\\\\n(2t-1)(t+2)=0\\\\\n2t-1=0 ,t+2=0\\\\\nt=\\frac{1}{2}, t=-2"
So,
"\\tan\\frac{\\theta}{2}=\\frac{1}{2} or-2"
But,. there is a condition that "\\csc\\theta<0" .
If "\\tan\\frac{\\theta}{2}=\\frac{1}{2}" , then "\\csc\\theta=\\frac{5}{4}>0" . Therefore, this is not the answer.
If "\\tan\\frac{\\theta}{2}=-2," then "\\csc\\theta=-\\frac{5}{4}<0" . Therefore this is the answer.
So, "\\tan\\frac{\\theta}{2}=-2."
Comments
Leave a comment