"\\tan x * \\tan 2x = 1\\\\\n\\dfrac{\\sin x}{\\cos x} * \\dfrac{\\sin 2x}{\\cos 2x} = 1\\\\ \\ \\\\\n\\dfrac{\\sin x}{\\cos x} * \\dfrac{2\\sin x *cosx}{\\cos^2 x-\\sin^2x} = 1\\\\ \\ \\\\\n\\ \\dfrac{2\\sin^2 x}{\\cos^2 x-\\sin^2x} = 1\\\\\n2\\sin^2 x = \\cos^2 x - \\sin^2 x\\\\\ntherefore \\ \\cos^2 x = 3\\sin^2 x\\\\\n\\cos x = \\pm \\sqrt3\\sin x\\\\\n\\ \\\\\n\\ \\\\\n\\sin 3x +\\cos 3x = \\\\\n= \\sin x*\\cos 2x +\\sin 2x * \\cos x + \\\\\n\\cos x *\\cos 2x -\\sin x *sin2x = \\\\\n= \\sin x *\\cos^2x -\\sin^3x + 2\\sin x*\\cos^2x + \\\\\n+\\cos^3 x -\\sin x*\\cos^2x - 2 \\sin^2x* \\cos x = \\\\\n = \\cos^3x-\\sin^3x+2\\sin x\\cos^2x-2\\sin^2 x\\cos x = \\\\\n= (\\cos x-\\sin x)(\\cos^2x+\\sin x\\cos x +\\sin^2 x) +\\\\\n+2\\sin x\\cos x(\\cos x-\\sin x) = (\\cos x-\\sin x)(1+ 3\\sin x\\cos x) = \\\\\n= \\cos x-\\sin x +3\\sin x\\cos^2 x -3\\sin^2 x\\cos x = \\\\\n1) \\sqrt3\\sin x -\\sin x + 3\\sin^3 x -3\\sqrt3\\sin^3x = \\\\\n= -\\sqrt3\\sin x(3\\sin^2 x -1) +\\sin x(3\\sin^2x-1) =\\\\\n(3\\sin^2x-1)(\\sin x-\\sqrt3\\sin x) \\ne1 \\\\\n2) -\\sqrt3\\sin x -\\sin x + 3\\sin^3 x +3\\sqrt3\\sin^3x = \\\\\n= \\sqrt3\\sin x(3\\sin^2 x -1) +\\sin x(3\\sin^2x-1) =\\\\\n(3\\sin^2x-1)(\\sin x+\\sqrt3\\sin x) \\ne1 \n\\\\\n\\ \\\\\nanswer: \\sin3x+\\cos3x \\ne 1"
Comments
Leave a comment