"\\dfrac{21-16\\sin^2x+8\\cos x}{16\\cos^2x-29-8\\sqrt{15}\\sin x}=2" The Pythagorean Identity
"\\sin^2x+\\cos^2x=1"
Then
"\\dfrac{5+16(1-\\sin^2x)+8\\cos x}{16(\\cos^2x-1)-13-8\\sqrt{15}\\sin x}=2"
"\\dfrac{16\\cos^2x+8\\cos x+5}{-16\\sin^2x-8\\sqrt{15}\\sin x-13}=2"
Let "u=\\sin x, v=\\cos x." Then
"\\begin{cases}\n u^2+v^2=1 \\\\\n 16v^2+8v+5=-32u^2-16\\sqrt{15}u -26\n\\end{cases}"
"\\begin{cases}\n u^2+v^2=1 \\\\\n (16v^2+8v+1)+2(16u^2+8\\sqrt{15}u +15)=0\n\\end{cases}"
"\\begin{cases}\n u^2+v^2=1 \\\\\n (4v+1)^2+2(4u+\\sqrt{15})^2=0\n\\end{cases}" Then
"\\begin{cases}\n u^2+v^2=1 \\\\\n 4v+1=0 \\\\\n4u+\\sqrt{15}=0\n\\end{cases}" Check
"-16\\sin^2x-8\\sqrt{15}\\sin x-13\\not=0"
"-16u^2-8\\sqrt{15}u-13\\not=0" "u=-\\dfrac{\\sqrt{15}}{4}:"
"-16(-\\dfrac{\\sqrt{15}}{4})^2-8\\sqrt{15}(-\\dfrac{\\sqrt{15}}{4})-13"
"=-15+30-13=2\\not=0" Hence
"\\cos x=-\\dfrac{1}{4}"
"x=\\pm(\\pi-\\arccos(\\dfrac{1}{4}))+2\\pi n, n\\in\\Z"
Comments
Leave a comment