A plane flying with a constant speed of 300 km/h passes over a ground radar station at an altitude of 1 km and climbs at an angle of 300. At what rate is the distance from the plane to the radar station increasing a minute later?
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\cos(120)&= \\small \\frac{(vt)^2+(1km)^2-r^2}{2(vt)(1km)}\\cdots(1)\\\\\n\\small 2vt\\cos (120)&= \\small v^2t^2-r^2-1\\\\\n\\small 2v\\cos(120)\\times 1&= \\small 2v^2t-2r\\frac{dr}{dt}-0\\\\\n\\small \\frac{dr}{dt}&= \\small \\frac{2v^2t-2v\\cos(120)}{2r}\\\\\n\\small \\frac{dr}{dt}_{t=\\frac{1}{60}h}&= \\small \\frac{2(300kmh^{-1})^2(\\frac{1}{60}h)-2(300)(-0.5)}{2r}\\\\\n\\small &= \\small \\frac{1650}{r}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small -0.5&= \\small \\frac{(300\\times \\frac{1}{60})^2+1-r^2}{2(300\\times\\frac{1}{60})(1)}\\\\\n\\small r&= \\small 5.568km\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{dr}{dt}_{t=\\frac{1}{60}}&= \\small \\frac{1650\\,km^2h^{-1}}{5.568km}\\\\\n&= \\small \\bold{296.336\\,kmh^{-1}}\n\\end{aligned}"
Comments
Leave a comment