Solve for x in degrees, where 0 degrees <= x < 360 degrees . 2sin^2 x - sin x = 1
Solution.
"2\\sin^2{x}-\\sin{x}=1, \\text{ }0^{\\degree}\\leq x <360^{\\degree}."Make a replacement: "t=\\sin{x}," then "2t^2-t-1=0."
Solve this equation:
Back to the replacement:
1)
"\\sin{x}=-\\frac{1}{2}, \\newline\nx=(-1)^n\\arcsin{(-\\frac{1}{2})}+\\pi n, n \\in Z, \\newline\nx=(-1)^{n+1}\\arcsin{\\frac{1}{2}}+\\pi n, n \\in Z, \\newline\n\nx=(-1)^{n+1}\\frac{\\pi}{6}+\\pi n, n \\in Z, \\newline\nx=(-1)^{n+1}30^{\\degree}+180^{\\degree} n, n \\in Z."
At
"n=1: x=30^{\\degree}+180^{\\degree}=210^{\\degree}, \\newline\nn=2: x=-30^{\\degree}+180^{\\degree}\\cdot 2=330^{\\degree}. \\newline"
2)
"\\sin{x}=1, \\newline\nx=\\frac{\\pi}{2}+2\\pi k, k \\in Z, \\newline\nx=90^{\\degree}+360^{\\degree}k, k \\in Z. \\newline"
At
"k=0: x=90^{\\degree}."
Answer. "x=210^{\\degree}, x=330^{\\degree}, x=90^{\\degree}."
Comments
Leave a comment