The value of the voltage in an ac circuit at any time t seconds is given by V1 = 70 sin (50 t). Going through a component results in the wave lagging by 0.32 radians, the result being V2 = 70 sin (50π t – 0.32).
a) For t = 0 to t = 80ms, use increments of 5ms plot the following 3 graphs on the same pair of axes.
V1 = 70 sin (50 t).
V2 = 70 sin (50π t – 0.32).
V3 = V1 + V2
b) For V2 = 70 sin (50π t – 0.32) state the voltage at t = 0, 20 and 50ms.
c)Verify the answers to (b) using sin (A – B) = sin A cos B – cos A sin B.
d)Use the sine and cosine rules to find the equation for V3.
a. The plot is as shown below
b. "V_2 = 70 sin (50\u03c0 t \u2013 0.32)"
At t=0, "V_2 = 70 sin (50\u03c0 *0 \u2013 0.32)=70\\sin \\left(50\\pi 0-\\frac{8}{25}\\right)"
"=70\\sin \\left(-\\frac{8}{25}\\right)=70\\left(-\\sin \\left(\\frac{8}{25}\\right)\\right)=-70\\sin \\left(\\frac{8}{25}\\right)=-22.02"
At t=20, "V_2 = 70 sin (50\u03c0 *20 \u2013 0.32)=70\\sin \\left(50\\pi *20-\\frac{8}{25}\\right)"
"70\\sin \\left(1000\\pi -\\frac{8}{25}\\right)=-22.02"
At t=50, "V_2 = 70 sin (50\u03c0 *50 \u2013 0.32)=70\\sin \\left(50\\pi *50-\\frac{8}{25}\\right)"
"70\\sin \\left(2500\\pi -\\frac{8}{25}\\right)=-22.02"
c. "sin (A \u2013 B) = sin A cos B \u2013 cos A sin B."
"A=50\u03c0t \\space and \\space B=0.32"
At t=0, "sin(50\\pi*0)cos0.32\u2013cos(50\\pi*0)sin0.32.=-22.02"
At t=20, "sin(50\\pi*20)cos0.32\u2013cos(50\\pi*20)sin0.32.=-22.02"
At t=50, "sin(50\\pi*50)cos0.32\u2013cos(50\\pi*50)sin0.32.=-22.02"
d. "V_1+V_2=\\left\\{70\\:sin\\:\\left(50\\pi \\:t-\\:0.32\\right)\\right\\}+\\left\\{70\\:sin\\:\\left(50\\pi \\:t\\right)\\right\\}"
"V_3=70(\\sin \\left(50\\pi t\\right)\\cos \\left(0.32\\right)+\\cos \\left(50\\pi t\\right)\\sin \\left(0.32\\right))"
"V_3=70\\left(\\sin \\left(50\\pi t\\right)+0.94923 \\sin \\left(157.07963t\\right)+0.31456\\cos \\left(157.07963 t\\right)\\right)"
"V_3=70\\left(1.94923\\sin \\left(157.0796t\\right)+0.31456\\cos \\left(157.07963t\\right)\\right)"
Comments
Leave a comment