cos x - cos x sinΒ² x = cos x - cos x (1 + cosΒ² x)
Β Β Β Β Β Β Β Β Β Β = cos x - cos x - cosΒ³ x
Β Β Β Β Β Β Β Β Β Β = -cosΒ³ x
4. John said πππ π + πππ π = π has no solution. Do you agree with John? Explain why or why not?
Verify identity:
Solution.
1.
"\\sec{(-\\theta)}=\\sec{\\theta},"
because "\\sec\\theta=\\frac{1}{\\cos \\theta}" and "\\cos(-\\theta)=\\cos \\theta."
2.
"1-\\sin^2x\\cot^2x=1-\\sin^2x\\frac{\\cos^2x}{\\sin^2x}=\\newline\n=1-\\cos^2x=\\sin^2x."
As for me, this way is easier, because it is a way of proving by definition.
3.
Β Β Β "\\cos x-\\cos x\\sin^2x=\\cos x-\\cos x(1-\\cos^2x)=\\newline\n=\\cos x-\\cos x+\\cos^3x=\\cos^3x."
4.
I agree with John, because this equation has no solution.
"\\sin x+\\cos x=2,"
"\\sqrt{2}\\sin(x+\\frac{\\pi}{4})=2,"
"\\sin(x+\\frac{\\pi}{4})=\\frac{2}{\\sqrt{2}},"
and "\\frac{2}{\\sqrt{2}}>1."
This equation has no real solutions.
Verify identity:
1.
"\\cot^2\\theta+\\frac{1}{\\cot^2\\theta}=\\cot^2\\theta+\\tan^2\\theta,\\newline\n\\sec^2\\theta=\\frac{1}{\\cos^2\\theta}=1+\\tan^2\\theta."
But "1\\neq \\cot^2\\theta." This equality is not an identity.
"\\cot^2\\theta+\\frac{1}{\\cot^2\\theta}\\neq\\sec^2\\theta."
2.
"(\\csc^2\\theta-1)\\sin^2\\theta=(\\frac{1}{\\sin^2\\theta}-1)\\sin^2\\theta=\\newline=\\frac{1-\\sin^2\\theta}{\\sin^2\\theta}\\sin^2\\theta=1-\\sin^2\\theta=\\cos^2\\theta."
3.
"1-\\sec\\alpha\\cos\\alpha=0," and "\\tan\\alpha\\cot\\alpha-1=0."
So, "1-\\sec\\alpha\\cos\\alpha=\\tan\\alpha\\cot\\alpha-1."
4.
"\\tan A+\\frac{\\cot A}{\\sec A\\csc A}=\\tan A+\\frac{\\cos A\\cdot \\cos A\\sin A}{\\sin A}=\n\\newline=\\tan A+\\cos^2A=\\frac{\\sin A+\\cos^3A}{\\cos A}\\neq 1."
This equality is not an identity.
5.
"\\sec^4\\theta-\\tan^4\\theta=(\\sec^2\\theta-\\tan^2\\theta)(\\sec^2\\theta+\\tan^2\\theta)=\\newline\n=\\frac{1-sin^2\\theta}{\\cos^2\\theta}\\cdot\\frac{1+sin^2\\theta}{\\cos^2\\theta}=\n\\frac{\\cos^2\\theta+\\sin^2\\theta+\\sin^2\\theta}{\\cos^2\\theta}=1+2\\tan^2\\theta."
Comments
Leave a comment