23.2 If f(t) = 2 sin t + 3 cost, express f(t) as a single sinusoid and hence determine its
amplitude and phase.
Solution:
"f(t) = 2 \\sin t + 3 \\cos t"
Let "f(t)=A \\sin(t+\\theta)" , where "A" is amplitude and "\\theta" is phase.
So, "2 \\sin t + 3 \\cos t=A \\sin(t+\\theta)"
"\\Rightarrow2 \\sin t + 3 \\cos t=A [\\sin t \\cos\\theta+\\cos t \\sin \\theta]\n\\\\\\Rightarrow2 \\sin t + 3 \\cos t=A \\sin t \\cos\\theta+A\\cos t \\sin \\theta"
On comparing both sides,
"A\\cos\\theta=2,A\\sin\\theta=3\n\\\\\\Rightarrow \\tan\\theta=\\dfrac32\n\\\\\\Rightarrow \\theta=56.31\\degree"
Then, "A\\cos\\theta=2"
"\\Rightarrow A\\cos 56.31\\degree=2\n\\\\ \\Rightarrow A=3.605"
Thus, amplitude is 3.605 and phase is "56.31\\degree" .
Comments
Leave a comment