Prove the following trig identities
sin 2x + cos 2x / sin x + cos x = 2cosx
2sinxcosx / cos4x-sin4x = tan2x
(b)
"\\frac{2sinxcosx}{cos^4x-sin^4x}=tan2x"
taking LHS
"=\\frac{sin2x}{(cos^2x+sin^2x)(cos^2x-sin^2x)}\\\\=\\frac{sin2x}{cos^2x-sin^2x}\\\\=\\frac{sin2x}{cos2x}\\\\=tan2x"
(a)
"\\frac{sin2x+cos2x}{cosx+sinx}=2cosx"
taking LHS
"=\\frac{2sinxcosx+2cos^2x-1}{cosx+sinx}"
"2cosx- \\frac{1}{sinx+cosx}"
so sinx +cosx cannnot be zero so this is not solved further
Comments
Leave a comment