Determine the numerical value of the following expression without the use of a calculator:
log10 (1000100)
100
+
X100
n=1
sin(n) + 1
(1)n
!
vuut
1Y000
m=1
1
cos(m)2
Question: Determine the numerical value of the following expression without the use of a calculator:
Solution:
For the logarithm operation:
"\\frac{\\log_{10} (1000^{100})} {100}"
"= \\frac{100\\log_{10} 1000} {100}"
"= \\frac{100\\log_{10} 10^3} {100}"
"= \\frac{(3\\times 100)\\log_{10} 10} {100}"
since "\\log_{10} 10 = 1";
Then,
For the cycle operations:
"f(n) = \\sum_{n = 1}^{100}\\frac{\\sin(\\pi n)+1}{(-1)^n}""for \\ all \\ {n \\in \t\\mathbb{N}}, \\sin(\\pi n) = 0 \\\\ considering \\ the \\ denominator, \\\\ for \\ even \\ n, \\frac{\\sin(\\pi n) + 1} {(-1)^n} =1 \\\\ for \\ odd \\ n, \\frac{\\sin(\\pi n) + 1} {(-1)^n} = -1"
Therefore, dividing the summation into two parts: i.e. 50 odds and 50 evens, we have:
"f(n) = \\\\ 50 \\times (\\frac{\\sin(\\pi n) + 1} {(-1)^n}) \\ for\\ denominator\\ n = evens \\\\ + 50 \\times (\\frac{\\sin(\\pi n) + 1} {(-1)^n}) \\ for\\ denominator\\ n = odds \\\\\\ = (50 \\times 1) + (50\\times -1) = 50 - 50 = 0"
"\\therefore \\ f(n) = \\sum_{n = 1}^{100}\\frac{\\sin(\\pi n)+1}{(-1)^n} = 0"Also, for:
"f(m) = \\sqrt{\\prod_{m=1}^{1000}\\frac{1}{\\cos (\\pi m)^{2}}}""for \\ all \\ {m \\in \\mathbb{N}}, \\frac{1} {\\cos(\\pi m)^2} = 1"
Therefore the product of:
Therefore, the final answer to the expression is given by:
Comments
Leave a comment