Prove that
(a) (sin x + cos x) (tan x + cot x) = sec x + cosec x.
(b) sec x sin x / tan x + cot x = sin² x .
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small (\\sin x + \\cos x)(\\tan x+\\cot x)&=\\small (\\sin x+\\cos x)\\Big(\\frac{\\sin x}{\\cos x}+\\frac{\\cos x}{\\sin x}\\Big)\\\\\n&=\\small (\\sin x+\\cos x)\\Big(\\frac{\\sin^2 x+\\cos^2 x}{\\sin x \\cos x}\\Big)\\\\\n&=\\small \\frac{1}{\\cos x}+\\frac{1}{\\sin x}\\\\\n&=\\small \\sec x+ \\cosec x\\\\\n\\\\\n\\\\\n\\small \\frac{\\sec x \\sin x}{\\tan x+ \\cot x}&=\\small \\frac{\\tan x}{\\tan x+\\large\\frac{1}{\\tan x}}\\\\\n&=\\small \\frac{\\tan^2 x}{\\tan^2 x+1}\\\\\n&=\\small \\frac{\\tan^2 x}{\\sec^2 x}\\\\\n&=\\small \\frac{\\sin^2x}{\\cos^2x\\times\\sec^2x}\\\\\n&=\\small \\sin^2x\n\\end{aligned}"
Comments
Leave a comment