Prove that the divergence of a curl is always zero:
∇⃗⃗. (∇⃗⃗
×a)=0
Let us recall the propertied of Levi-Civata's symbol "\\epsilon_{ijk}" in three dimension,where "i,j,k \\in \\{1,2,3\\}" .
Properties,
"\\epsilon_{ijk}=0 \\hspace{1cm} (\\dag)"
if at least two of "i,j,k" are equal.
If we exchange any two consecutive indices like "i \\leftrightarrow j" then "\\epsilon_{ijk}=-\\epsilon_{jik} \\:(\\spades)"
The cross product of any two vector in terms of Levi-Civata's symbol is defined as bellow,
where,subscript "i ,j,k" of any vector denotes respectively "i^{th},j^{th},k^{th}" component of that vector.
Now, denote
"\\partial_i = \\frac{\\partial}{\\partial x^{i}}"Let the vector "\\overrightarrow{a} = a_1 \\hat{e_1}+a_2 \\hat{e_2}+a_3 \\hat{e_3}" ,where "\\hat{e_i}" is the orthogonal unit vector for all "i \\in \\{1,2,3\\}" .
Thus,from "(\\dag),(\\dag \\dag) ,(\\star),(\\star \\star)" and above notation, we get ,
"\\overrightarrow{\\nabla} \\cdot (\\overrightarrow{\\nabla} \\times \\overrightarrow{a})= \\sum_{i=1}^{3} \\partial_{i} (\\sum_{j=1}^{3} \\sum_{k=1}^{3}\\epsilon_{ijk} \\partial_j a_k)\\\\\n\\overrightarrow{\\nabla} \\cdot (\\overrightarrow{\\nabla} \\times \\overrightarrow{a})= \\sum_{i=1}^{3} \\sum_{j=1}^{3} \\sum_{k=1}^{3}\\epsilon_{ijk}\\partial_i \\partial_j a_k \\\\\n\\overrightarrow{\\nabla} \\cdot (\\overrightarrow{\\nabla} \\times \\overrightarrow{a})= \\sum_{i=1}^{3} \\sum_{j=1}^{3} \\sum_{k=1}^{3}-\\epsilon_{jik}\\partial_j \\partial_i a_k \\hspace{1cm} (from, \\spades)\\\\\n\\overrightarrow{\\nabla} \\cdot (\\overrightarrow{\\nabla} \\times \\overrightarrow{a})= \\sum_{i=1}^{3} \\sum_{j=1}^{3} \\sum_{k=1}^{3}-\\epsilon_{ijk}\\partial_i \\partial_j a_k\\\\\n\\overrightarrow{\\nabla} \\cdot (\\overrightarrow{\\nabla} \\times \\overrightarrow{a})=-\\overrightarrow{\\nabla} \\cdot (\\overrightarrow{\\nabla} \\times \\overrightarrow{a})\\\\\n \\implies \\overrightarrow{\\nabla} \\cdot (\\overrightarrow{\\nabla} \\times \\overrightarrow{a})= 0"Hence, we are done.
Comments
Leave a comment