The escape velocity is
"v = \\sqrt{\\dfrac{2GM}{R}} = \\sqrt{\\dfrac{2\\cdot6.67\\cdot10^{-11}\\,\\mathrm{N\\,m^2\/kg^2}\\cdot2\\cdot10^{30}\\,\\mathrm{kg}}{0.9\\cdot6.4\\cdot10^6\\,\\mathrm{m}}} = 6.8\\cdot10^6\\,\\mathrm{m\/s}."
Let us assume the observer to be very far from the white dwarf. Therefore, the gravitational redshift can be calculated as
"z_G = \\dfrac{GM}{c^2R} = \\dfrac{6.67\\cdot10^{-11}\\,\\mathrm{N\\,m^2\/kg^2}\\cdot2\\cdot10^{30}\\,\\mathrm{kg}}{(3\\cdot10^8\\,\\mathrm{m\/s})^2\\cdot 0.9\\cdot6.4\\cdot10^6\\,\\mathrm{m}} = 2.6\\cdot10^{-4}."
Therefore, the change of wavelength of the carbon line is
"\\Delta\\lambda = z_G\\cdot\\lambda_0 = 2.6\\cdot10^{-4}\\cdot700\\,\\mathrm{nm} = 0.18\\,\\mathrm{nm}."
Comments
Leave a comment