a) the gravitational potential energy at the distance r is
"E=-\\frac{GMm}{r}=-\\frac{\\frac{4}{3}\\pi R^3\\rho Gm}{r}" If r = R + h,
"E=-\\frac{\\frac{4}{3}\\pi R^3\\rho Gm}{R+h}"
b) At the surface of the Moon the potential energy is
"E=-\\frac{\\frac{4}{3}\\pi R^3\\rho Gm}{R+0}" The total energy is
"K+E=0.5mv^2-\\frac{4}{3}\\pi R^2\\rho Gm=-\\frac{\\frac{4}{3}\\pi R^3\\rho Gm}{R+h}"
"G=\\frac{3v^2}{8\\pi \\rho R^2}\\left(1-\\frac{R}{R+h}\\right)^{-1}"
c)
"G=\\frac{3(\\frac{30}{3.6})^2}{8\\pi (3340)(1.74\u22c510 ^\n6)^2}\\left(1-\\frac{1.74\u22c510 ^\n6}{1.74\u22c510 ^\n6+21.5}\\right)^{-1}\\\\=6.64\\cdot10^{-11}\\frac{Nm^2}{kg^2}"
Comments
Leave a comment