Answer to Question #192037 in Astronomy | Astrophysics for Pranali Patil

Question #192037

There are four planets in our solar system with a large number of moons; Jupiter, Saturn, Uranus and Neptune.  Choose one of these planets and for that planet, randomly select five moons.  For each of these moons, record (or calculate) the mean orbital radius and orbital period (in units of your choosing).  Then use this information to calculate the Kepler ratio for each of these moons orbiting its planet.  Compare the ratios and determine whether or not Kepler’s third law applies for moons around a planet other than Earth.


1
Expert's answer
2021-05-14T09:43:10-0400

Consider moons of Jupiter.


"1.\\text{ Metis: }\\space\\space\\space\\space a=128852\\text{ km,}\\space\\space\\space\\space\\space T=0.2988 \\text{ d},\\\\\n2.\\text{ Io: }\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space a=421700\\text{ km, }\\space\\space\\space\\space T=1.7691 \\text{ d},\\\\\n3.\\text{ Europa: }\\space a=671034\\text{ km, }\\space\\space\\space\\space T=3.5512\\text{ d},\\\\\n4.\\text{ Himalia: }a=11497400\\text{ km, }T=251.86 \\text{ d},\\\\\n5. \\text{ Callisto: }a=1882709\\text{ km, }\\space\\space T=16.689 \\text{ d}."


The Kepler ratio is


"r=\\frac{T^2}{R^3}."

Calculate the Kepler ratio for each moon:


"1.\\space r=4.17\u00b710^{-17} \\text{ d}^2\/\\text{km}^3.\\\\\n2.\\space r=4.17\u00b710^{-17} \\text{ d}^2\/\\text{km}^3.\\\\\n3.\\space r=4.17\u00b710^{-17} \\text{ d}^2\/\\text{km}^3.\\\\\n4.\\space r=4.17\u00b710^{-17} \\text{ d}^2\/\\text{km}^3.\\\\\n5.\\space r=4.17\u00b710^{-17} \\text{ d}^2\/\\text{km}^3.\\\\"


Thus, Kepler’s third law applies for moons around a planet other than Earth.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS