One example of a nuclear fission reaction involving slowly moving neutrons is
1/0n + 235/92 U ---> 236/92 U* ---> 95/42 Mo + 139/57 La + (2) 1/0n
What is the total kinetic energy (in eV) of the products of the reaction? The relevant masses are:
235/92 U = 235.043 924 u; 95/42 Mo - 94.9058 u; 139/59 La = 138.9061 u, and 1/0n = 1.0087u
To be given in question
Urenium mass =235.043"u"
Molebidnum mass =94.9058"u"
Neutron mass =1.0087"u"
Lanthanum mass =13 8.9061 "u"
To be asked in question
Kinetic energy in eV(election volt) =?
23592U +1n "\\longrightarrow" 236U*"\\longrightarrow" 9542 Mo+13957La+2(1n)
"M_{1}=M({235_{U}})+M_{{1}_{n}}"
"M_{2}=M_{{235}_{U}}+M_{{139}_{La}}+2M_{{1}_{n}}"
"\\Delta M =M_{1}-M_{2}"
"M_{1}= 235.04+1.0087"
"M_{1}=236.0487 u"
"M_{2}=(94.9058+138.9061+2\\times1.0087) u" "M_{2}=235.8293 u"
"\\Delta M =M_{1}-M_{2}"
Put value
"\\Delta M" =236.0487-235.8293 "u"
"\\Delta M=0.2194 u"
"\\Delta E=\\Delta Mc^2"
"\\Delta E=0.2194\\times931.5"
"\\Delta E=204.3711 mev"
1kg 235U fission energy release
"K.E=\\frac{6.02\\times 10^{23}}{0.235}\\times{204.3711}"
"K.E=5.2353\\times 10^{26}Mev""K.E=5.2353\\times 10^{23}Kev"
Comments
Leave a comment