8. If the real normalized functions f(x) and g(x) are not orthogonal, show that their sum f(x) +g(x) and their difference f(x)−g(x) are orthogonal.
Inner product for real functions: "\\langle f,g\\rangle = \\int\\limits_{-\\infty}^{\\infty }f(x)g(x)dx" .
If "f(x)" and "g(x)" are normalized, then "\\langle f,f\\rangle = \\int\\limits_{-\\infty}^{\\infty }f(x)^2dx=1" and "\\langle g,g\\rangle = \\int\\limits_{-\\infty}^{\\infty }g(x)^2dx=1" .
We need to prove, that "\\langle f+g, f-g\\rangle =0" .
"\\langle f+g,f-g\\rangle = \\int\\limits_{-\\infty}^{\\infty }\\big(f(x)+g(x)\\big)\\cdot \\big( f(x)-g(x)\\big)dx=\n\n\\int\\limits_{-\\infty}^{\\infty }\\big(f(x)^2-g(x)^2\\big)dx= \\int\\limits_{-\\infty}^{\\infty }f(x)^2dx-\\int\\limits_{-\\infty}^{\\infty }g(x)^2dx=1-1=0."
So, "f(x)+g(x)" and "f(x)-g(x)" are orthogonal
Comments
Leave a comment