The moon Titan orbits the planet Saturn with a period of 1.9 × 106 s. The average radius of
this orbit is 1.6 × 109 m.
a) What is Titan’s centripetal acceleration?
b) What is Titans Velocity?
The information given is
The period of a complete orbit is "T=1.9\\times 10^{6}\\;\\text{s}"
The average radius of the orbit is. "r=1.6\\times 10^{9}\\;\\text{s}"
Considering the circular orbit.
The angular speed is given by
"w=\\dfrac{2\\;\\pi\\;\\text{rad}}{T}"
Where.
"2\\;\\pi\\;\\text{rad}" is the angular displacement of a complete orbit
"T" is the period of a complete orbit.
Evaluating numerically.
"w=\\dfrac{2\\;\\pi\\;\\text{rad}}{T}\\\\\nw=\\dfrac{2\\;\\pi\\;\\text{rad}}{1.9\\times 10^{6}\\;\\text{s} }\\\\\nw= 3.3\\times 10^{-6} \\text{rad}\/\\text{s}"
The centripetal acceleration is given by.
"a_{c}=w^{2}\\;r"
Where.
"w" is the angular speed
"r" is the radius.
Evaluating numerically.
"a_{c}=w^{2}\\;r\\\\\na_{c}=( 3.3\\times 10^{-6} \\text{rad}\/\\text{s} )^{2}\\times 1.6\\times 10^{9}\\;\\text{s} \\\\\na_{c}=1.7\\times 10^{-2}\\;\\text{m}\/\\text{s}^{2}"
Answer A
The centripetal acceleration is "\\displaystyle \\color{red}{\\boxed{a_{c}=1.7\\times 10^{-2}\\;\\text{m}\/\\text{s}^{2}}}"
Part b
The linear velocity is given by
"V=w\\cdot r"
Where
"w" is the angular speed
"r" is the radio
Evaluating numerically
"V=w\\cdot r\\\\\nV= 3.3\\times 10^{-6} \\text{rad}\/\\text{s}\\times 1.6\\times 10^{9}\\;\\text{s}\\\\\nV=5.3\\times 10^{3}\\;\\text{m}\/\\text{s}"
Answer B
The velocity is "\\displaystyle \\color{red}{\\boxed{V=5.3\\times 10^{3}\\;\\text{m}\/\\text{s}}}"
Comments
Leave a comment