An element is first connected across an external resistance R1=2 Ω, and
then across an external resistance R2= 0.5 Ω. Find the e.m.f. of the
element and its internal resistance if in each of these cases the power
evolved in the external circuit is the same and equal to 2.54 W.
"I= \\frac{E}{R+r}"
"P=I^2R= \\frac{E^2R}{(R+r)^2}"
"P_1=\\frac{E^2*2}{(2+r)^2}"
"P_2=\\frac{E^2*0.5}{(0.5+r)^2}"
"P_1 = P_2=2.54"
"\\frac{E^2*2}{(2+r)^2}=\\frac{E^2*0.5}{(0.5+r)^2}"
"4*(0.5+r)^2=(2+r)^2"
"2*(0.5+r)=(2+r)"
"r=1"
"P_1=I_1^2R_1"
"I_1=\\sqrt{\\frac{P_1}{R_1}}=\\sqrt{\\frac{2.54}{2}}=1.17"
"I_1= \\frac{E}{R_1+r}"
"E=I_1(R_1+r)=1.17(2+1)=3.51"
"\\text{Answer: }e.m.f = 3.51V;r=1\\Omega"
Comments
Leave a comment