The given information is
Part A
The acceleration is given by.
"a=\\dfrac{V_{f}-V_{i}}{t}"
where,
"V_{i}" Is the initial velocity.
"V_{f}" Is the final velocity.
"t" Is the time.
Evaluating numerically.
"a=\\dfrac{V_{f}-V_{i}}{t}\\\\\n.\\\\\na=\\dfrac{(8.0\\;i\\;+10.0\\;j)\\;\\text{m}\/\\text{s}-3.0\\;i\\;\\text{m}\/\\text{s}}{8.0\\;\\text{s}}\\\\\n.\\\\\na=\\dfrac{8.0\\;i\\;\\text{m}\/\\text{s}+10.0\\;j\\;\\text{m}\/\\text{s}-3.0\\;i\\;\\text{m}\/\\text{s}}{8.0\\;\\text{s}}\\\\\n.\\\\\na=\\dfrac{5.0\\;i\\;\\text{m}\/\\text{s}+10.0\\;j\\;\\text{m}\/\\text{s}}{8.0\\;\\text{s}}\\\\\n.\\\\\na=\\dfrac{(5.0\\;i+10.0\\;j)\\;\\text{m}\/\\text{s}}{8.0\\;\\text{s}}\\\\\n.\\\\\na=(0.625\\;i+1.25\\;j)\\;\\text{m}\/\\text{s}^{2}\\\\"
The force on the object is given by.
"F=m\\;a\\\\"
where.
"m" Is the mass.
"a" is the acceleration.
Evaluating numerically.
"F=m\\;a\\\\\nF=4.0\\;\\text{Kg}\\times (0.625\\;i+1.25\\;j)\\;\\text{m}\/\\text{s}^{2}\\\\\nF=(2.5\\;i+5\\;j)\\;\\text{N}"
Answer (a)
The force on the object is
The horizontal component. "\\displaystyle \\color{red}{\\boxed{F_{x}=2.5\\;\\text{N}}}"
The vertical component. "\\displaystyle \\color{red}{\\boxed{F_{y}=5\\;\\text{N}}}"
Part B
The magnitude of the force is given by.
"F=\\sqrt{ F_{x}^{2}+F_{y}^{2}}"
Evaluating numerically.
"F=\\sqrt{ F_{x}^{2}+F_{y}^{2}}\\\\\nF=\\sqrt{ (2.5\\;\\text{N})^{2}+(5\\;\\text{N})^{2}}\\\\\nF=\\sqrt{ 31.25\\;\\text{N}^{2} }\\\\\nF=5.6\\;\\text{N}"
Answer B
The magnitude of the force on the object is "\\displaystyle \\color{red}{\\boxed{F=5.6\\;\\text{N}}}"
Comments
Wow amazing solution,
Leave a comment