Given,
Distance (d)= 3.6 km
"(d)= 3.6\\times 1000 m = 3600m"
Time "(t) = 3min = 3\\times 60 = 180s"
greatest speed "(v)=90 km\/h = 90\\times \\frac{1000}{60\\times 60} m\/s"
"\\Rightarrow (v)=\\frac{15\\times 10}{6}m\/s = 25 m\/s"
initial speed "(u) = 0", let the acceleration of the train be a, and time during the acceleration be "t_1" and time for the de-acceleration be "t_2"
Motion during acceleration,
"\\Rightarrow v=u+at_1"
"\\Rightarrow 25=at_1"
"\\Rightarrow t_1 = \\frac{25}{a}"
"d_1 = \\frac{at_1^2}{2}=\\frac{625}{2a}"
motion during de-acceleration,
"\\Rightarrow v_f=v-at_2"
Now, substituting the values,
"\\Rightarrow 0=25-at_2"
"\\Rightarrow at_2 = 25"
"\\Rightarrow t_2=\\frac{25}{a}"
"v_f^2=v^2-2ad_2"
"\\Rightarrow 0= 25^2-2ad_2"
"\\Rightarrow d_2=\\frac{625}{2a}"
Time, during which train traveled with constant velocity,
"d_3 = 25t_3"
given that,"t_1+t_2+t_3 = 180s"
"\\Rightarrow t_3= 180-(t_1+t_2)"
so, "d_3=(180-(t_1+t_2))\\times 25"
"\\Rightarrow d_3 = (180-(\\frac{25}{a}+\\frac{25}{a}))\\times 25"
"\\Rightarrow d_3= (180- \\frac{50}{a})\\times 25"
Now, "d_1+d_2+d_3 = 3600m"
"\\Rightarrow \\frac{625}{2a}+\\frac{625}{2a}+(180-\\frac{50}{a})\\times 25 = 3600m"
"\\Rightarrow \\frac{1250}{2a}+4500-\\frac{1250}{a}=3600"
"\\Rightarrow \\frac{1250}{a}-\\frac{1250}{2a}=4500-3600"
"\\Rightarrow \\frac{1250}{2a}=900"
"\\Rightarrow a =\\frac{1250}{1800}=0.7m\/s^2"
now, "t_1=t_2 = \\frac{50}{0.7}" sec
"\\Rightarrow t_1=t_2 = 71.42 sec"
now "d_3 = (180-71.42-71.42)\\times 25"
"\\Rightarrow d_3 = 929m"
Hence, the distance traveled with full speed is "929m"
Comments
Leave a comment