Q8. Calculate the divergence and Curl, of the following functions
a. V= x2 i+3xy^2 j -2xyz k
b. V=xyi+2yz j+3zx k
c. V= y2i +(2xy+z2)j+ 2yz k , where i , j , k are unit vectors along x, y and z axis
"\\rm curl\\:{\\bf V}=\\begin{vmatrix}\n \\hat i & \\hat j &\\hat k\\\\\n \\frac{\\partial}{\\partial x} & \\frac{\\partial}{\\partial y} & \\frac{\\partial}{\\partial z} \\\\\nV_x&V_y&V_z\n\\end{vmatrix}"
(a)
"{\\rm div}{\\bf V}=\\frac{\\partial (x^2)}{\\partial x}+\\frac{\\partial (3xy^2) }{\\partial y}+\\frac{\\partial (-2xyz)}{\\partial z}\\\\=2x+6xy-2xy=2x+4xy""{\\rm curl\\:{\\bf V}}=\\begin{vmatrix}\n \\hat i & \\hat j &\\hat k\\\\\n \\frac{\\partial}{\\partial x} & \\frac{\\partial}{\\partial y} & \\frac{\\partial}{\\partial z} \\\\\nx^2&3xy^2&-2xyz\n\\end{vmatrix}""=-2xy\\hat i+2yz\\hat j+3x\\hat k"
(b)
"{\\rm div}{\\bf V}=\\frac{\\partial (xy)}{\\partial x}+\\frac{\\partial (2yz) }{\\partial y}+\\frac{\\partial (3zx)}{\\partial z}\\\\=y+2z+3x""{\\rm curl\\:{\\bf V}}=\\begin{vmatrix}\n \\hat i & \\hat j &\\hat k\\\\\n \\frac{\\partial}{\\partial x} & \\frac{\\partial}{\\partial y} & \\frac{\\partial}{\\partial z} \\\\\nxy&2yz&3zx\n\\end{vmatrix}"
"=-2y\\hat i-3z\\hat j-x\\hat k"
(c)
"{\\rm div}{\\bf V}=\\frac{\\partial (y^2)}{\\partial x}+\\frac{\\partial (2xy+z^2) }{\\partial y}+\\frac{\\partial (2yz)}{\\partial z}\\\\=2x+2y""{\\rm curl\\:{\\bf V}}=\\begin{vmatrix}\n \\hat i & \\hat j &\\hat k\\\\\n \\frac{\\partial}{\\partial x} & \\frac{\\partial}{\\partial y} & \\frac{\\partial}{\\partial z} \\\\\ny^2&2xy+z^2&2yz\n\\end{vmatrix}"
"=0\\hat i+0\\hat j+0\\hat k=\\bf 0"
Comments
Leave a comment