A pendulum of mass m and length b is attached to a massless support initially at rest and then moving with vertically upward acceleration a
( a) Determine the Lagrangian
( b) Find the equation of motion of the pendulum
Refer to the figure below
"x=b\\sin\\theta,~y=\\frac 12at^2-b\\cos \\theta,"
"\\dot x=b\\dot {\\theta}\\cos \\theta,~\\dot y=at+b\\dot{\\theta}\\sin \\theta,"
"T=\\frac 12m(\\dot x^2+\\dot y^2)=\\frac 12 m(b\\dot{\\theta}^2+a^2t^2+2abt\\dot{\\theta}^2\\sin \\theta),"
"L=T-mgy,\\implies"
"\\frac d{dt}(mb^2\\dot {\\theta}^2+mabt\\sin \\theta)=mabt\\dot \\theta\\cos \\theta-mgb\\sin\\theta),"
"b^2\\ddot \\theta+ab\\sin \\theta+abt\\dot \\theta\\cos \\theta=abt\\dot \\theta\\cos \\theta-gb\\sin \\theta,"
"\\ddot \\theta+\\frac{a+g}b\\sin \\theta=0," "\\sin \\theta=\\theta,"
"\\ddot \\theta+\\frac{a+g}b\\theta=0,"
"\\ddot \\theta+\\omega^2 \\theta=0,\\implies"
"T=\\frac{2\\pi}{\\omega}=2\\pi\\sqrt{\\frac b{a+g}}."
Comments
Leave a comment