Show that, when SI units for μ0 and ϵ0 are entered, the units given by the right-hand side of the equation in the problem above are m/s.
We know that
"c=\\frac{1}{\\sqrt{\\mu_0\\epsilon_0}}\\rightarrow(1)"
RHS
Unit of
"\\mu_0=\\frac{T\\times m}{A}"
"\\epsilon=\\frac{c^2}{N\\times m^2}"
"A=\\frac{c}{sec}"
"\\mu_0=\\frac{T\\times sec\\times m}{c}"
Equation (1) put RHS value
"c=\\frac{1}{\\sqrt{\\frac{T\\times m \\times sec}{c} \\times{\\frac {c^2}{N\\times m^2}}}}"
"c=\\frac{1}{\\sqrt{\\frac{T \\times sec\\times c}{N\\times m}}}\\rightarrow(2)"
Now We know that
"F=qvB"
"v=\\frac{F}{qB}"
Unit
"v=\\frac{N}{c\\times T}\\rightarrow({3})"
Equation (2) and (3) we can written as
"c=\\frac{1}{\\sqrt{\\frac{1}{v}\\times \\frac{sec}{m}}}"
"\\frac{1}{v}=\\frac{sec}{m}"
"c=\\frac{1}{\\sqrt{\\frac{1}{v^2}}}"
"c=v"
Unit of c=v =m/sec
LHS=RHS
Comments
Leave a comment