Apply the Gauss's law we get
Thus, in this case as spherical shell is symmetric, thus
"E\\oiint_{S}dA=\\dfrac{2\\times 10^{-7}}{\\epsilon_0}\\\\\n\\implies E(4\\pi r^2)=\\dfrac{2\\times 10^{-7}}{\\epsilon_0}\\\\\\implies E=\\dfrac{1}{4\\pi\\epsilon_0}\\dfrac{2\\times 10^{-7}}{0.25^2}=9\\times 10^9\\times 2 \\times 10^{-7}\/0.25^2=28800N\/C"
Comments
Leave a comment