By definition
where (c=1)
Connection between the vectors "\\vec{E}" , "\\vec{B}" and 4-vector "A^\\mu=(A^0,\\vec{A})" is
So
"F^{0i}=\\partial^0 A^i-\\partial^i A^0=\\partial^0 A^i+\\nabla_i A^0=-\\vec{E}_i\\,,\\quad i=1,2,3""F^{12}=\\partial^1 A^2-\\partial^2A^1=-\\partial_x A_y+\\partial_y A_x=-[\\nabla\\times\\vec{A}]_z=-{B}_z"
"F^{13}=\\partial^1 A^3-\\partial^3A^1=-\\partial_x A_z+\\partial_z A_x=[\\nabla\\times\\vec{A}]_y={B}_y""F^{23}=\\partial^2 A^3-\\partial^3A^2=-\\partial_y A_z+\\partial_z A_y=-[\\nabla\\times\\vec{A}]_x=-{B}_x"
Taking into account that "F^{\\mu\\nu}=-F^{\\nu\\mu}" and "F^{\\mu\\mu}=0" we have
"F^{\\mu\\nu}=\n\\left(\n \\begin{array}{cccc}\n 0&-E_x&-E_y&-E_y\\\\\n E_x&0&-B_z&B_y\\\\\n E_y&B_z&0&-B_x\\\\\nE_z&-B_y&B_x&0\\\\\n \\end{array}\n\\right)"
Comments
Leave a comment