a satellite orbits earth at an altitude 356 kilometers above the planets surface. Compute for its (a) radius (b) speed (c) orbital period. (mE=5.97x10^24 kg)
Radius
"R=R_e+h"
We know that
In circular motion
"\\frac{GmM}{R}=\\frac{mv^2}{R}"
"V=\\sqrt{\\frac{GM}{R}}"
Put (R)=Re+h,M=Me
Speed "V=\\sqrt{\\frac{Gm_e}{R_e+h}}"
"V=\\sqrt{\\frac{6.67\\times10^{-11}\\times5.97\\times10^{24}}{6400\\times10^3+356000}}"
"V=\\sqrt{\\frac{6.67\\times10^{-11}\\times5.97\\times10^{24}}{6756000}}=7.6772km\/sec"
V=7.677km/sec
Time period
"T=\\frac{2\\pi R}{V}"
"T=\\frac{2\\times3.14\\times6756000}{7677}=5526.59sec"
"T=\\frac{5526.59}{60\\times60}=1.53hr"
Comments
Leave a comment