Find the number of oxygen molecules in 0.1 kg, whose speeds lie between 195 and 205 m/s at
0C.
Solution;
Given;
T=O°c=273K
m=0.1kg which is contained in 3.125mols
"v_1=195"
"v_2=205"
"v=\\frac{v_1+v_2}{2}=\\frac{195+205}{2}=200m\/s"
The number of molecules is;
"dN=G(v)dvN"
But;
"G(v)dv=4\u03c0v^2(\\frac{M}{2\u03c0RT})^{\\frac32}e^{\\frac{-Mv^2}{2RT}}dv"
Compute each term;
"4\u03c0v^2=4\u03c0\u00d7200^2=160000\u03c0"
"\\frac{M}{2\u03c0RT}=\\frac{0.032}{2\u03c0\u00d78.314\u00d7273}=2.244\u00d710^{-6}"
"e^{\\frac{-Mv^2}{2RT}}=e^{\\frac{-0.032\u00d7200^2}{2\u00d78.314\u00d7273}}=0.7543"
"DV=205-195=10"
"G(v)dv=160000\u03c0\u00d72.244\u00d710^{-6}\u00d70.7543\u00d710=8.5082"
Then the number of molecules are;
"dN=8.5082\u00d73.125\u00d76.02\u00d710^{23}=1.6\u00d710^{25} molecules"
Comments
Leave a comment