A 3.65-mol sample of an ideal diatomic gas expands adiabatically from a
volume of 0.1210 m 3 to 0.750 m 3 . Initially the pressure was 1.00 atm. Determine:
a) the initial and final temperatures, [Ans = 404 K, 195K]
b) the change in internal energy, [Ans = −1.59 X 10 4 J]
c) the heat lost by the gas, [Ans = take a guess]
d) the work done on the gas [Ans = having guessed part c) right, you should…]
Note. 1.00 atm = 101.3 kPa. Assume no molecular vibration but still use
diatomic adjustment values.
Given:
"n=3.65\\:\\rm mol"
"V_1=0.121\\:\\rm m^3"
"V_2=0.750\\:\\rm m^3"
"P_1=\\rm 1\\: atm=101.3*10^3\\: Pa"
"\\gamma=1.4"
(a)
"PV=nRT""T_1=\\frac{P_1V_1}{nR}=\\frac{101.3*10^3*0.121}{3.65*8.31}=404\\:\\rm K"
"TV^{\\gamma-1}=const"
"T_2=T_1(V_1\/V_2)^{\\gamma-1}=404(0.121\/0.750)^{0.4}=195\\:\\rm K"
(b)
"\\Delta U=-W=-\\frac{P_1V_1^{\\gamma}}{1-\\gamma}(V_2^{1-\\gamma}-V_1^{1-\\gamma})""\\Delta U=\\frac{101.3*10^3*0.121^{1.4}}{0.4}(0.750^{-0.4}-0.121^{-0.4})\\\\=-1.59*10^4\\:\\rm J"
(c) adiabatic process is a process without heat exchange, hence
"Q=0"(d)
"W=-\\Delta U=1.59*10^4\\:\\rm J"
Comments
Leave a comment