An Otto cycle operates on 1lb/s of air from 15 psia and 130 F at the beginning of
compression. The temperature at the end of combustion is 5,000 R; compression ratio is 5.5. for
hot-air standard k=1.32. find (a) T4, OR; (b)P4, psia; (c) Qr, BTU/s; (d) thermal efficiency, and (e)
work net in horsepower.
Solution;
"\\dot m=1lb\/s"
"r=5.5"
"k=1.32"
"P_1=15psia"
"T_1=130\u00b0F=460+130=590\u00b0R"
"T_3=5000\u00b0R"
State 1:
By the Ideal gas equation;
"V_1=\\frac{mRT_1}{P_1}"
"V_1=\\frac{1\u00d753.54\u00d7590}{15\u00d7144}=14.62ft^3\/s"
State 2:
From the relation;
"P_1V_1^k=P_2V_2^k"
"P_2=P_1(\\frac{V_1}{V_2})^k"
"P_2=15(5.5)^{1.32}=142.35psia"
Also;
"T_2=T_1(\\frac{V_1}{V_2})^{k-1}"
"T_2=590(5.5)^{1.32-1}=1018.05\u00b0R"
And;
"\\dot{V_2}=\\frac{\\dot V_1}{r}=\\frac{14.62}{5.5}=2.66ft^3\/s"
State 3:
Constant volume heat addition;
"\\dot V_3=\\dot V_2=2.66ft^3\/s"
"T_3=5000\u00b0R"
"P_3=T_3(\\frac{P_2}{T_2})"
"P_3=5000(\\frac{142.35}{1018.05}=699.13psia"
State 4:
Isentropic expansion;
Hence;
"T_4=T_3(\\frac{V_3}{V_4})^{k-1}"
"T_4=5000(\\frac{1}{5.5})^{1.32-1}"
"T_4=2897.70\u00b0R"
Ans: "T_4=2897.70\u00b0R"
Since process 4-1 is constant volume process;
"P_4=T_4(\\frac{P_1}{T_1})"
"P_4=2897.7(\\frac{15}{590})=73.65psia"
Ans: "P_4=73.65psia"
(c) Heat rejected;
We know that;
"C_v=\\frac{R}{k-1}=\\frac{53.54}{(1.32-0.32)\u00d7778}"
"C_v=0.2151Btu\/lb\u00b0R"
"Q_r=\\dot{m}C_v(T_1-T_4)"
"Q_r=1\u00d70.2151(590-2897.7)"
"Q_r=-496.39Btu\/s"
(d)Thermal.efficiency;
"\\eta=\\frac{W}{Q_a}"
Heat added;
"Q_a=mC_v(T_3-T_2)"
"Q_a=1\u00d70.2151(5000-1018.05)=856.52Btu\/s"
Work;
"W=Q_a-Q_r=856.52-496.39=360.13Btu\/s"
Hence;
"\\eta=\\frac{360.13}{856.52}=0.4205"
Ans: 42.05%
(e) Work net in horsepower,hp;
"W=\\frac{360.13\u00d760}{42.4}=509.62hp"
Ans:509.62hp
Comments
Leave a comment