Calculate the wave and group velocities of water waves at (a) A = 2 cm, (b) A =
8.0 cm, and (c) A = 20.0 cm. The wave velocity of short waves such as these are
given by
where A is the wavelength in meters, T is the surface tension in newtons per meter,
which at room temperature is 0.073N/m, g isthe acceleration due to gravity, 9.80m/s2
,
and d is the density of the liquid in kilograms per cubic meter.
"wave\\:velocity:\\:v=\\sqrt{\\frac{\\lambda }{2\\pi }\\left(g+\\frac{4\\pi T^2}{\\lambda ^2\\rho }\\right)}"
"T=0.073\\frac{N}{m}\\:"
"\\rho =100\\frac{kg}{m^3}"
"g=9.8\\frac{m}{s^2}"
"\\lambda =0.02m\\:v=\\sqrt{\\left(\\frac{0.02}{2\\times3.14}\\right)\\left(9.8+\\frac{4\\times 3.14\\times\\left(0.073\\right)^2}{\\left(0.02\\right)^2\\times1000}\\right)}=0.178\\frac{m}{s}"
"\\lambda =0.08m\\:v=\\sqrt{\\left(\\frac{0.08}{2x3.14}\\right)\\left(9.8+\\frac{4x3.14x\\left(0.073\\right)^2}{\\left(0.08\\right)^2x1000}\\right)}=0.354\\frac{m}{s}"
"\\lambda =0.2m\\:v=\\sqrt{\\left(\\frac{0.2}{2x3.14}\\right)\\left(9.8+\\frac{4x3.14x\\left(0.073\\right)^2}{\\left(0.2\\right)^2x1000}\\right)}=0.559\\frac{m}{s}"
Comments
Leave a comment