A blue laser beam with a wavelength of 450nm illuminates 2 narrow slits each with a width of 0.5micrometers. The opaque strip separating the strips is 15 micrometers wide. The interference pattern is observed on a screen 85cm away.
1. [2] Relative to the optical axis through the center of the slits, at what angle in radians does the 1st interference minima occur?
2. [2] How far from the axis is this (in cm)?
3. [2] At what angle does the 3rd interference maxima (m=3) occur?
4. [2] How far from the axis is this (in cm)?
5. [4] Sketch the pattern (as a function of angle) from 3 maxima below to 3 maxima above the axis.
Given,
"\\lambda = 450nm"
Width of the slit "(w) = 0.5\\mu m"
Opaque strip separation "= 15\\mu m"
Screen distance from the slit "(D)=85 cm=0.85m"
i) Angular distance "(\\theta)=\\sin^{-1}(\\frac{\\lambda}{(m+1)d})"
Here m = 1
"(\\theta)=\\sin^{-1}(\\frac{\\lambda}{(1+1)d})"
Now, substituting the values,
"(\\theta)=\\sin^{-1}(\\frac{450\\times 10^{-9}}{(2)\\times (15+0.5)\\times 10^{-6}})"
"=\\sin^{-1}(0.0145)"
"\\simeq 0.83 ^\\circ"
ii) first interference minima "=\\frac{D\\lambda }{2d}"
Now, substituting the values,
"=\\frac{0.5\\times 0.85\\times 450\\times 10^{-9}}{2\\times (15+0.5)}"
"=0.0123m"
"\\simeq1.23cm"
iii)
For m=3,
"\\theta = \\sin^{-1}(\\frac{m\\lambda D}{d})"
Now, substituting the values,
"\\theta = \\sin^{-1}(\\frac{3\\times 450\\times 10^{-9} m}{15.6\\times 10^{-6}})"
"=\\sin^{-1}(0.087)"
"=4.99^\\circ"
"\\simeq 5^\\circ"
iv) here m = 3
"y=\\frac{m \\lambda D}{d}"
Now, substituting the values,
"y=\\frac{3\\times 450\\times 10^{-9} m\\times 0.85}{15.6\\times 10^{-6}}"
"=0.074m"
"\\simeq 7.4 cm"
v) The required pattern is given below-
Comments
Leave a comment