determine the work done by a force F = xyi + yzj + xzk in taking a particle along the path defined by the equation r(t)=ti + 2t²j + t³k, 0≤t≤1 from t=0 to t=2.
Solution:-
we have the following data given
Force "F = xy\\hat{i} + yz\\hat{j} + xz\\hat{k }"
Path equation "r(t) = t\\hat{i} + 2t^2\\hat{j} + t^3\\hat{k}"
"d(r) = \\hat{i}+4t\\hat{j}+3t^2\\hat{k}dt"
Work done "W=\\int F.dr"
"W=\\int(xy\\hat{i} + yz\\hat{j} + xz\\hat{k })(\\hat{i} +4t\\hat{j} + 3t^2\\hat{k})dt"
"=\\int xydt+yz\\times 4t dt+xz\\times 3t^2 dt"
Now, x = t, "y=t^2" and "z=t^3"
"=\\int t^3dt + 4t^6 dt+3t^6 dt"
"=\\int 7t^6 dt + \\int t^3 dt"
"=t^7+\\frac{t^4}{4}"
Now, substituting the values of t = 1
"=\\frac{5}{4} \\ answer"
Comments
Leave a comment