A multimode step index fiber has a material dispersion parameter of 250 ps
nm−1km−l at 1.2 μm. Estimate the pulse broadening for a 10 kilometer long fiber
with an LED source of spectral width 50 nm.
s
elative refractive index ∆ = 2 % = 0.02
Core refractive index n1 = 1.48
Link length L = 5 km = 5000 m
Maximum optical bandwidth "BW = 3 MHz = 3\\times 10^6 \\;Hz"
Material dispersion parameter M = 80 ps nm-1 km-1
Spectral width due to waveguide dispersion "\u03c3_\u03bb = 1"
The expression of the rms pulse broadening due to chromatic dispersion τ:
"\u03c4 \u2248 \\frac{L(NA)^2}{2n_{1}c}"
NA is the numerical aperture, n1 is core refractive index
c is the velocity of light "3\\times 10^8\\; m\/s"
The expression for numerical aperture NA:
"NA= n_1\\sqrt{2\u2206}"
∆ is the relative refractive index
"\u03c4 \u2248 \\frac{L(n_1\\sqrt{2\u2206})^2}{2n_1c}"
"\u03c4 \u2248 \\frac{5000(1.48\\sqrt{2\\times0.02})^2}{2\\times1.48\\times 3\\times10^8}"
"\u03c4 \u2248 0.493 \\;\u03bcs"
The expression to calculate the rms pulse broadening per km
"\\frac{\u03c4}{L} = \\frac{0.493\\; \u03bcs}{5\\; km} = 98.6\\; \\frac{ns}{km}"
The expression to calculate spectral width of source:
"\u03c3_m = \u03c3_\u03bb\\times M\\times L"
"\u03c3_m = 1\\times 80\\times 5 = 0.4 \\; \\frac{ns}{km}"
Comments
Leave a comment