In Newton’s ring experiment the diameter of 16
th bright ring changes from 1.8 cm to 1.5cm when a liquid is
introduced the plate and the lens. Find the refractive index of the liquid and the diameter of the 5
th dark ring
"d_{b16} =1.8cm"
"d'_{b16} =1.5cm"
"r_{bk}=\\sqrt{(k-\\frac{1}{2})\\frac{\\lambda R}{n}}"
"\\frac{r_{b16}}{r'_{b16}}=\\frac{d_{b16}}{d'_{b16}}=\\frac{1.8}{1.5}= 1.2"
"r_{b16}=\\sqrt{(16-\\frac{1}{2})\\frac{\\lambda R}{n_1}}"
"r'_{b16}=\\sqrt{(16-\\frac{1}{2})\\frac{\\lambda R}{n_2}}\\ (1)"
"\\frac{r_{b16}}{r'_{b16}}=\\sqrt{\\frac{n_2}{n_1}}"
"n_1\\approx 1 \\text{ suppose the expiration is in the air}"
"n_2 =1.2^2=1.44"
"r_{dk}=\\sqrt{k\\frac{\\lambda R}{n}}"
"\\text{From the formula (1)}"
"\\sqrt{\\frac{\\lambda R}{n_2}}=r'_{b16}*\\sqrt{\\frac{1}{15.5}}\\text{ then}"
"r'_{d5}=\\sqrt{5}*\\frac{d'_{b16}}{2}*\\sqrt{\\frac{1}{15.5}}=0.75*\\sqrt{\\frac{5}{15.5}}=0.43cm"
"\\text{Answer:}"
"1.44 -\\text{refractive index of a liquid}"
"0.43cm - \\text{radius 5 of the dark ring when immersed in liquid}"
Comments
Leave a comment