The energy value can be calculated on the basis of the Hamiltonian of the system as follows:
"E = <\\hat{H}>=<\\hat{T}> + <\\hat{U}> = \\frac{<\\hat{p}^2>}{2m} + \\frac{k <\\hat{x}^2>}{2}"
By definition, the uncertainties of the momentum and position operators are equal to:
"(\\Delta{p})^2 = <\\hat{p}^2> - <\\hat{p}>^2, \\quad (\\Delta{x})^2 = <\\hat{x}^2> - <\\hat{x}>^2"
Due to the symmetry of potential "<\\hat{p}> = 0 = <\\hat{x}>" .
Hence, we obtain:
"E = \\frac{(\\Delta p)^2}{2m} + \\frac{k (\\Delta x)^2}{2}" .
The uncertainty principle states the following: "\\Delta p \\Delta x \\geq \\frac{\\hbar}{2}" . Hence, "\\Delta p \\geq \\frac{\\hbar}{2 \\Delta x}" . As a result:
"E \\geq \\frac{(\\hbar)^2}{8 m (\\Delta x)^2} + \\frac{k (\\Delta x)^2}{2}"
The expression on the right side is minimal when "\\frac{d}{dx} \\left[ \\frac{(\\hbar)^2}{8 m (\\Delta x)^2} + \\frac{k (\\Delta x)^2}{2} \\right] = 0". Doing this explicitly leads to the following result: "(\\Delta x)^2 = \\frac{\\hbar}{2 \\sqrt{km}}=\\frac{\\hbar}{2 m \\omega}," where we utilized the relation "\\omega^2 = \\frac{k}{m}." Substituting this into the expression for energy results in the following:
"E_{min}= \\frac{\\hbar^2 2 m\\omega}{8m \\hbar}+ \\frac{m \\omega^2 \\hbar}{4 m \\omega} = \\frac{\\hbar \\omega}{2}"
Comments
Leave a comment