The low of Plank
"\\epsilon(\\nu,T)=\\frac{2h\\nu^3}{c^2}\\cdot\\frac{1}{e^{\\frac{h\\nu}{kT}}-1}."
"\\frac{d\\epsilon(\\nu,T)}{d\\nu}=0"
So, we get that
"-\\frac{h\\nu}{kT}\\cdot\\frac{e^{\\frac{h\\nu}{kT}}}{e^{\\frac{h\\nu}{kT}}-1}+3=0" "\\to" "(x-3)e^x+3=0" "(x=\\frac{h\\nu}{kT})"
From this equation "x = 2.821439372122"
"\\nu=\\frac{xkT}{h}=\\frac{2.821439372122\\cdot1.38\\cdot10^{-23}\\cdot1000}{6.62\\cdot10^{-34}}\\approx58.8\\cdot10^{12}Hz=58.8THz"
Infrared radiation (IR).
Comments
Leave a comment